Summary of VOC/HAP Emissions for Pollution Control Industries, Inc. (089-00345)

In draft TV permit (as of 4/11/05)

Unit	Uncontrolled VOC/HAP PTE (tpy)	Controlled VOC/HAP PTE (tpy)
HWF Storage (Unit 1)	8.87	0.089
HWF Shipping (Unit 2)	#REF!	#REF!
Tower (Unit 3)	N/A	N/A
Lab Pack - Organic Liquids (Unit 4)	2.48	0.050
Lab Pack - Acids and Caustics (Unit 4)	insig.	insig.
Lab Pack - Dry Chemicals (Unit 4)	N/A	N/A
Aerosol Can Unit (Unit 5)	N/A	N/A
Metal Wash (Unit 6)	N/A	N/A
Small Hazardous Shredder (Unit 7)	#REF!	#REF!

#REF! #REF!

Equipment added through MSM 089-15970-00345

	Uncontrolled VOC/HAP	
Unit	PTE (tpy)	
SDS Shredder (stack SDS 01)	0.12	0.122
ATDS (stack SDS 02)	0.74	0.74
Distillation Unit (SDS 05)	0.06	0.061
Storage Tanks	2.81	2.81

3.73 3.73

Source; Notes
TANKS 4.0
AP-42 methodology; unknown chemical surrogate
Destroyed by fire
PCI
PCI
PCI
Removed
Removed
PCI; questionable - based on stack test results from
destroyed tower

Source limit to avoid 326 IAC 2-3 per MPM 18513	
limit to avoid 326 IAC 2-3 per MPM 18514	
limit to avoid 326 IAC 2-3 per MPM 18515	
per TSD of MSM 15970	

Cell: D21

Comment: not limited; = uncontrolled

Page 1 of 24 TSD App A

Appendix A: Emissions Calculations **Emissions Summary Sheet**

Company Name: Tradebe Treatment and Recycling LLC
Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312
Permit Number: T089-35879-00345

Reviewer: Dominic Williams

				Uncontrolled PTE	(TPY)							
Project (Original Permit)	Emission Unit	РМ	PM ₁₀	PM _{2.5}	SO ₂	NOx	voc	со	CO2e	Total HAPs	Hig	hest Single HAP
City of East Chicago, Indiana, Department of Air Quality	HWM Storage	0	0	0	0	0	8.9	0	0	8.9	8.9	Toluene
Operation Permits (OP) 1 through 12 and Title V 089-7738-00345	Tank 24HP	0	0	0	0	0	2.2	0	0	2.2	2.2	Toluene
	Area 2 Shipping and Receiving	0	0	0	0	0	59.3	0	0	59.3	59.3	Toluene
	Area 8/10 Shipping and Receiving	0	0	0	0	0	77.3	0	0	77.3	77.3	Toluene
Title V 009-7730-00343	Unit 4 (Lab Pack Booths)	3.1	3.1	3.1	0	0	2.5	0	0	2.5	2.5	Toluene
	SDS Shredder	0	0	0	0	0	2.6	0	0	2.6	2.6	Toluene
	SDS Shaker and conveyor	77.7	77.7	77.7	0	0	0.0	0	0	0	0	
	SDS-ATDU from NG	0.1	0.5	0.5	0.04	6.8	0.4	5.7	8,248	0.13	0.12	Toluene
2003 Modification	SDS-VRU	0	0	0	0	0	2,328	809.2	14,706	904.3	904.3	Hexane
(MSM 089-15970-00345)	Flare FL1 (from VRU)	0	0	0	8.1	5.2	10.8	28.5	1,505	13.4	12.6	HCI
,	Distillation	0	0	0	0	0	2.3	0	0	2.3	2.3	Toluene
	Tanks 52-55	0	0	0	0	0	0.5	0	0	0.5	0.5	Toluene
	Heater	0.02	0.1	0.1	0.01	1.1	0.1	0.9	1,322	0.02	0.02	Toluene
2007-2008	Tanks 57-67	0	0	0	0	0	1.9	0	0	1.9	1.9	Toluene
(MSM 089-26876-00345 and AA 089-24703-00345)	Thin Film Evap	0.02	0.1	0.1	0.01	1.1	0.1	0.9	1,269	0.02	0.02	Toluene
2014 Modification (MSM 089-34241-00345)	Degassing	0	0	0	0	0	17.0	0	0	0.3	0.3	Toluene
	SDS Shredder II	0	0	0	0	0	7.1	0	0	7.1	7.08	Tetrachloroethylene
	SDS-ATDU II from NG	0.3	1.0	1.0	0.1	13.7	0.8	11.5	16,587	0.3	0.25	Hexane
	SDS VRU II	0	0	0	0	0	4,656	1,618	29,411	1,809	1,809	Hexane
	Flare FL1 (from VRU II)	0	0	0	16.2	10.5	21.6	57.0	3,010	14.0	13.1	HCI
2015 Modification	Solids Handling (SHS)	330.4	330.4	330.4	0	0	0.7	0	0	0	0	Toluene
(SSM 089-34432-00345)	Tank 81-87	0	0	0	0	0	1.3	0	0	1.3	1.3	Toluene
, , , , , , , , , , , , , , , , , , ,	F-01 & F-02	0	0	0	0	0	0.1	0	0	0.1	0.1	Toluene
	Cooling Tower	0.7	0.2	0.0	0	0	0	0	0	0	0	
	Pot Still (modified in 2015)*	0	0	0	0	0	4.2	0	0	4.17	4.17	Toluene
	Emergency Generator (G1)	0.2	0.1	0.1	0.9	5.4	0.2	1.2	261	2.5E-03	1.2E-03	Benzene
T''	Emergency Generator (G3)	4.3E-06	5.6E-04	5.6E-04	3.3E-05	0.2	6.6E-03	0.02	7.95	4.0E-03	3.0E-03	Formaldehyde
Title V 089-35879-00324	Tank 88	0	0	0	0	0	0	0	0	0	0	
Title V 089-7738-00345	Fugitive	1.9	0.4	0.4	0	0	0	0	0	1 0	0	***************************************
	Source Total	414.3	413.5	413.3	25.3	44.0		2,533.3	76.328	2,911.3	904.3	Hexane
	*The existing pot still was modified in 201			<u> </u>	1 - 212	1		,				
	2003 Modification Total	77.9	78.3	78.3	8.1	13.2	2,345	844.3	25,781	923.3	904.3	Hexane
	2015 Modification Total	331.5	331.7	331.5	17.2	29.6	4,692	1,688	49,270	1,836	1,809	Hexane

	Limited PTE (TPY)											
Project	Emission Unit	РМ	PM ₁₀	PM _{2.5}	SO₂	NOx	voc	со	CO2e	Total HAPs	Hig	hest Single HAP
City of East Chicago, Indiana, Department of Air Quality	HWM Storage	0	0	0	0	0	8.9	0	0	8.9	8.9	Toluene
Operation Permits (OP) 1 through 12	Tank 24HP	0	0	0	0	0	2.2	00	0	2.2	2.2	Toluene
and	Area 2 Shipping and Receiving	0	0	0	0	0	21.3	0	0	21.3	21.3	Toluene
Title V 089-7738-00345	Area 8/10 Shipping and Receiving		0	0	0	0	21.3	0	0	21.3	21.3	Toluene
1140 7 000 77 00 000 10	Unit 4 (Lab Pack Booths)	3.1	3.1	3.1	0	0	2.5	0	0	2.5	2.5	Toluene
	SDS Shredder	0	0	0	0	0	0.1	0	0	2.6	2.6	Toluene
	SDS Shaker and conveyor	77.7	77.7	77.7	0	0	0.7	00	0	0	0	
	SDS-ATDU from NG	0.1	0.5	0.5	0.04	6.8		5.7	8,248	0.13	0.12	Hexane
2003 Modification	SDS-VRU	0	0	00	0	0	Less Than	8.6	14,706	904.3	904.3	Hexane
(MSM 089-15970-00345)	Flare FL1 (from VRU)	0	0	0	8.1	5.2	23.4	28.5	1,505	13.4	12.6	Toluene
	Distillation	0	0	0	0	0	0.06	0	0	2.3	2.3	Toluene
	Tanks 52-55	0	0	0	0	0	0.5	0	0	0.5	0.5	Toluene
	Heater	0.02	0.1	0.1	0.01	1.1	0.1	0.9	1,322	0.02	0.02	Toluene
2007-2008	Tanks 57-67	0	0	0	0	0	1.9	00	0	1.9	1.9	Toluene
(MSM 089-26876-00345 and AA 089-24703-00345)	Thin Film Evap	0.02	0.1	0.1	0.01	1.1	0.1	0.9	1,269	0.02	0.02	Toluene
2014 Modification (MSM 089-34241-00345)	Degassing	0	0	0	0	0	17.0	0	0	0.28	0.28	Toluene
	SDS Shredder II	0	0	0	0	0		0	0	7.1	7.1	Toluene
	SDS-ATDU II from NG	0.3	1.0	1.0	0.1	13.7		11.5	16,587	0.3	0.2	Hexane
	SDS VRU II	0	0	0	0	0	*Less	17.6	29,411	1,809	1,809	Hexane
	Flare FL1 (from VRU II)	0	0	0	16.2	10.5	Than	57.0	3,010	14.0	13.1	HCI
2015 Modification	Solids Handling (SHS)	82.8	82.8	82.8	0	0	95.6	0	0	0	0	Toluene
(SSM 089-34432-00345)	Tanks 81-87	0	0	0	0	0		0	0	1.3	1.3	Toluene
	F-01 & F-02	0	0	0	0	0		0	0	0.1	0.1	Toluene
	Cooling Tower	0.7	0	0	0	0	0	0	0	0	0	
	Pot Still (modified in 2015)*	0	0	0	0	0	4.2	0	0	4.17	4.17	Toluene
	Emergency Generator (G1)	0.2	0.1	0.1	0.9	5.4	0.2	1.2	261	2.5E-03	1.2E-03	Benzene
Title V 089-35879-00324	Emergency Generator (G3)	4.3E-06	5.6E-04	5.6E-04	3.3E-05	0.2	6.6E-03	0.02	7.95	4.0E-03	3.0E-03	Formaldehyde
Title V 003-33073-00324	Tank 88	0	0	0	0	0	0.0	0	0	0	0	
Title V 089-7738-00345	Fugitive	1.9	0.4	0.4	0	0	0	0	0	0	0	
							Less Than					
	Source Total	166.7	165.9	165.8	25.3	44.0		132.0	76,328	2,817	2,713	Hexane
	*The existing pot still was modified in 2			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		noonnnoonda				k	lannanna i annannannannala	
							Less					
							Than					
2003 Modification	2003 Modification Total	77.9	78.3	78.3	8.1	13.2	24.9	43.8	25,781	923.3	904.4	Hexane
							Less Than					
2015 Modification	2015 Modification Total	83.9	84.1	83.9	17.2		99.9			1,836	1,809	Hexane

SDS Shredder II

Company Name: Tradebe Treatment and Recycling LLC

Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312

Permit Number: T089-35879-00345
Reviewer: Dominic Williams

The SDS Shredder II is similar to the existing SDS Shredder. Therefore,

VOC concentration is assumed to be equal to VOC concentration tested from the shredder exhaust for SDS.

SDS Shredder stack test (6/4/09) resulted in VOC emission rate of:

11.4 ppmv as propane (C3H8)

0.0002 lb/hr as C2Cl4

SDS II design air flow rate from the shredder exhaust will be:

70 scfm

Controlled VOC/HAPs potential to emit

0.032 lb/hr as C2Cl4

0.14 tons/yr

Uncontrolled VOC/HAPs PTE (assuming a carbon control efficiency of 98%) =

1.62 lb/hr as C2Cl4

7.08 tons/yr

Methodology

Controlled PTE = flow rate (scfm) * 60 min/hr * emission rate (ppmv) /1000000 cf exhaust * (0.1196 lb propane/cf propane) * (497.49 lb C2Cl4/88.18 lb C3H8) = Uncontrolled PTE (ton/yr) = Controlled PTE (ton/yr) / (1 - Control Efficiency (%))

Page 2 of 24 TSD App A

Appendix A: Emission Calculations ATDU Burner

Company Name: Tradebe Treatment and Recycling LLC

Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312

Permit Number: T089-35879-00345 Reviewer: Dominic Williams

Heat Input

Capacity Potential Throughput mmBtu MMBtu/hr MMCF/yr

mmscf

32.0 1020 274.8

		Pollutant										
	PM*	PM10*	direct PM2.5*	SO2	NOx	voc	СО					
Emission Factor in lb/MMCF	1.9	7.6	7.6	0.6	100	5.5	84					
					**see below							
Potential Emission in	0.26	1.04	1.04	0.08	13.7	0.76	11.5					

^{*}PM emission factor is filterable PM only. PM10 emission factor is filterable and condensable PM10 combined.

PM2.5 emission factor is filterable and condensable PM2.5 combined.

Methodology

All emission factors are based on normal firi

MMBtu = 1,000,000 |

MMCF = 1,000,000 Cubic Fe

Emission Factors are from AP 42, Chapter 1.4, Tables 1.4-1, 1.4-2, 1.4-3, SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03

Potential Throughput (MMCF/yr) = Heat Input Capacity (MMBtu/hr) x 8,760 hrs/yr x 1 MMCF/1,020 MMBtu

Emission (tons/yr) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton

		HAPs - Organics										
	Benzene	Dichlorobenzene	Formaldehyde	Hexane	Toluene	Total - Organics						
Emission Factor in lb.	2.1E-03	1.2E-03	7.5E-02	1.8E+00	3.4E-03							
Potential Emission in	2.9E-04	1.6E-04	1.0E-02	0.25	4.7E-04	0.26						

			HAPs - Metals			
	Lead	Cadmium	Chromium	Manganese	Nickel	Total - Metals
Emission Factor in lb.	5.0E-04	1.1E-03	1.4E-03	3.8E-04	2.1E-03	
Potential Emission in	6.9E-05	1.5E-04	1.9E-04	5.2E-05	2.9E-04	7.5E-04
					Total HAPs	0.26
Methodology is the same a	as above.				Worst HAP	0.25

Methodology is the same as above.

The five highest organic and metal HAPs emission factors are provided above.

Additional HAPs emission factors are available in AP-42, Chapter 1.4.

		Greenhouse Gas	
	CO2	CH4	N2O
Emission Factor in lb.	120,000	2.3	2.2
Potential Emission in	16,489	3.16E-01	3.02E-01
Summed Potential Emissi	ons in tons/yr	16,490	
CO2e Total in tons/yr		16,587	

Methodology

The N2O Emission Factor for uncontrolled is 2.2. The N2O Emission Factor for low Nox burner is 0.64.

Emission Factors are from AP 42, Table 1.4-2 SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03.

Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

Emission (tons/yr) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton

CO2e (tons/yr) = CO2 Potential Emission ton/yr x CO2 GWP (1) + CH4 Potential Emission ton/yr x CH4 GWP (25) + N2O Potential

Page 3 of 24 TSD App A

^{**}Emission Factors for NOx: Uncontrolled = 100, Low NOx Burner = 50, Low NOx Burners/Flue gas recirculation = 32

Solids Handling System

Company Name: Tradebe Treatment and Recycling LLC
Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312
Permit Number: T089-35879-00345

Reviewer: Dominic Williams

	VOC/HAPs	VOC/HAPs
Total VOC* (ug/m3)	PTE (lb/hr)	PTE (ton/yr)
9365	0.154	0.7

*Based on results of similar unit (SDS 04)

						PTE of	PTE of			
		Design Outlet	Overall	PTE of		PM/PM10/PM2.5		Limited	Limited	
	Maximum Air	Grain Loading	Control	PM/PM10/PM2.5		Before Control	Before Control	PM/PM10/PM2.5	PM/PM10/PM2.5	Equivalent Limited Control
Unit	Flow (acfm)	(gr/scf)	Efficiency	After Control (lbs/hr)	PTE of PM/PM10/PM2.5 After Control (ton/yr)	(lbs/hr)	(ton/yr)	Emissions (lb/hr)	Emissions (ton/yr)	Efficiency
SDS 04	4400	0.04	98%	1.51	6.6	75.43	330.4	18.90	82.8	74.9%

Assume PM=PM10=PM2.5

Methodology

VOC/HAPs PTE (ton/yr) = VOC (ug/m3) x 1 g / 1000000 ug x 0.0283 m³ / ft³ x 1 lb / 453.6 g x air flow (acfm) x 60 min/1 hour x 1 ton/2000 lb x 8760 hrs/yr PTE of PM/PM10/PM2.5 After Control (ton/yr) = air flow (acfm) x grain loading (gr/scf) x 1 lb / 7000 gr x 60 min/1 hour x 1 ton/2000 lb x 8760 hrs/yr PTE of PM/PM10/PM2.5 Before Control = PTE of PM/PM10/PM2.5 After Control x (1 - control efficiency)

Equivalent Limited Control Efficiency = 1 - [Limited PM/PM10/PM2.5 Emissions (lb/hr) / PTE of PM/PM10/PM2.5 Before Control (lbs/hr)]

Page 4 of 24 TSD App A

Page 5 of 24 TSD App A

Appendix A: Emission Calculations Vapor RecoveryUnit - VRU II CompanyName: Tradebe Treatment and Recycling LLC Source Address: 4943 Kennedy Avenue, East Chicago, N. 46312 Permit Number: T088-36579-00345 Reviewer: Demnic Williams

Emission factors for SDS II VRU based on testing performed on existing SDS VRU, designed in the Tradebe Title V permit as SDS 07

Air Flow Rate to Flare for SDS 07

384.92 scfm (saturated) 365.674

			Average process rate during sample	ng = 2.19	tons per hour					
	T						Doneital	incontrolle	Uncontrolle	a
Constituent	Sample 1	Sample 2	Sample 3	Sample 4	Averag e	CEM	(lb/cf)	d PTE	d VOC	1
7	9 16	10.95	3.73	6.39	7.56	27.64	1		0.00	1
- -	10.78	10.51	7.82	10.76	9.97	36.45		161 83		1
······································	36.6	44.1	55.4	44.1	45.05	184 74	NA.	NA.		1
	0.76	0.75	0.64	0.76	0.73	2.66	NA	NA		1
25	< 0.03	<0.03	0.288	< 0.03	0.07	0.26	0.0911	1.44		1
62	5.45	5.81	5.04	6.85	5.79	21.16	0.117	148.57		1
H4	16.26	12.15	8.33	11.29	12.01	43.91	0.0424	111.70		1
ostylene	0.01	<0.01	0.03	0.01	0.01	0.05	0.0697	0.19	0.19	1
hy ane	6.06	4.07	5.35	6.22	5.43	19.84	0.0746	88.79	88.79	1
hane	3,63	2.39	2.65	2.83	2.88	10.51	NA	NA		1
ropane	0.611	0.524	0.628	0.472	0.56	2.04	0.1196	14.66	14.66	1
ropyana	5.06	3,51	3.24	3.89	3.93	14.35	0.111	95.59	95.59	1
ther C4s	0.011	<0.01	0.122	< 0.01	0.03	0.12	0.1582	1.15	1.15	1
Butane	0.021	0,036	0.033	0.061	0.04	0.14	0.1582	1.31	1.31	1
Butane	0.052	0.06	0.101	0.04	0.06	0.23	0.1582	2.20	2.20	1
utenes Hher CSs	1.51	1	1.29	2.03	1.46	5.33	0.148	47.33	47.33	1
ther C5s	0.28	0 231	0.277	0.345	0.28	1.04	0.1904	11.83	11.83	1
eo Pentane	0.114	0.103	0.115	0 116	0.11	0.41	0.1904	4 68	4.68	1
Parlane	0.004	0.006	0.004	0 004	0.00	0.02	0.1904	0.19	0.19	1
Pertene	0.088	0.053	0.097	0 094	0.08	0.30	0.1904	3.47	3.47	1
Pertene	0.111	0.112	0.229	0 128	0.15	0.53	0.1852	5 89	5.89	1
her C6s	0.136	0.119	0.166	0 179	0.15	0.55	0.2274	7 48	7.48	1
9/3R6 +	3.26	3.47	4.38	3.39	3.63	13.26	0.2274	180.86	180.86	(ass
ross HV (dry) (BTU/cf)	761	622	643	688	678.50					1
ross HV (sat) (BTU/cf)	748	611	632	676	666.75					1
	00 068	90 954	90.06	99,959	99 96025	365 5286446			465.63	1

Materials classified as volatile organic compounds (VOCs) were totaled to determine total VOC emissions.
 Uncontrolled emission rates during sampling and emission factors for regulated air pollutarts are summarized below.
 Nitrogan Oxides:

161.83 pounds per hour (based on unconfrolled emissions from flare gas analysis above) 73.90 pounds per ton processed (unconfrolled based on gas analysis)

AP-42 emission factor (table 13.5-1) expressed as 0.37 lb/mmBtu 5.70 lb/hr (controlled using AP-42 emission factor) 2.60 lb/hor (controlled using AP-42 emission factor)

465.63 pounds per tour
212.61 pounds per ton processed
AP-42 emission factor (Table 13.5-1) expressed as 0.14 lb/mmBtu) the Hexane+ category is assumed to be 100% organic HAPs

the Hexane+ category is assumed to be 100% organic HAPs

180.86 pounds per hour
82.58 pounds per ton processed

Control efficiency for HAPs assumed equal to destruction efficiency for 0.34 libfur (controlled)
0.38 libfur (controlled)

111.70 pounds per hour (uncontrolled based on uncontrolled emissions from flare gas analysis above) 51.01 pounds per ton processed (uncontrolled based on gas analysis)

Control efficiency for CH4 assumed equal to destruction efficiency for VC 0.52 pounds per hour (controlled) 0.52 pounds per hour (controlled) 0.24 pounds per ton (controlled)

SO2 1705 mg/m² CI besed on one sample collected
2.53 libri HCI emissions
1.15 pounds per from (controlled and uncontrolled)
0.6 lb HCI produced per form ("Waste processed (besed on analysis for existing SDS unit and anticipated chlorine content of materials processed)

105 mg/m³ F based on one sample collected
0.16 lbfm HF emissions
0.70 lbfm (votarisal aid and uncontrolled)
0.07 lbfm (votarisal aid and uncontrolled)
0.038 lb HF produced per ton of waste processed (based on analysis for existing SDS unit and articipated fluorine content of malanials processed

Vapor Recovery Unit - VRU II

Company Name: Tradebe Treatment and Recycling LLC
Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312
Permit Number: T089-35879-00345

Reviewer: Dominic Williams

5 Maximum Throughput (tons of SDS II vapor product/hr)
23827 Limited Throughput (tons of SDS II vapor product/year)
1.48 CO Limit (lb/ton SDS II vapor product processed)

Emissions from VRU II

Linicolonic Noni Vito ii							
	Uncontrolled Emission					Controlled	
Pollutant	Factor (lb/ton SDS II					and Limited	Overall
	vapor product	Uncontrolled				Emissions	Emission
	processed)	PTE (lb/hr)	Uncontrolled PTE (ton/yr)	Control Efficiency	Controlled Emissions (lb/hr)	(ton/yr)*	Reduction
VOCs	212.6	1063.1	4656.3	98%	21.3	50.7	98.91%
СО	73.9	369.5	1618.3	98%	7.4	17.6	98.91%
Hexane	82.6	412.9	1808.6	98%	8.3	19.7	98.91%
CO2	67.8	339.2	1485.7	0%	339.2	808.2	45.60%
CH4	51.0	255.0	1117.0	98%	5.1	12.2	98.91%
CO2e	1343.0	6714.9	29411.4		NA	NA	

^{*}Emissions limit in order to keep the 2014 Modification to a minor modification for 326 IAC 2-3 (Emission Offset) and 326 IAC 2-2 (PSD).

Emissions created by flare

Pollutant	Emission Factor (lb/ton)	Potential Emissions (lb/hr)	Potential Emissions (ton/yr)
NOx	0.48	2.4	10.5
VOCs	0.98	4.9	21.6
СО	2.60	13.0	57.0
SO2	0.74	3.7	16.2
HCI	0.60	3.0	13.1
HF	0.04	0.2	0.8

Pollutant	Captured CH4 Emissions (lb/ton)	PTE (tons/yr)	GWP	Emissions (ton/yr CO2e)
CO2	51	3,010	1	3,010

Methodology

Uncontrolled PTE (ton/yr) = Emission factor (lb/ton) x Max Throughput (ton/hr) x 8760 hr/yr Controlled PTE (ton/yr) = Unontrolled PTE (ton/yr) x (1 - Control Eff.) Limited PTE (ton/yr) = Emission factor (lb/ton) x Limited Throughput (ton/yr) x 1 ton/2000 lb Limited and Controlled PTE (ton/yr) = Limited PTE (ton/yr) x (1 - Control Eff.)

Page 6 of 24 TSD App A

Vapor Recovery Unit - VRU

Company Name: Tradebe Treatment and Recycling LLC
Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312

Permit Number: T089-35879-00345
Reviewer: Dominic Williams

2.5 Maximum Throughput (tons of SDS vapor product/hr)
11686 Limited Throughput (tons of SDS vapor product/year)
1.48 CO Limit (lb/ton SDS vapor product processed)

Emissions from VRU

Emissions nom vito							
	Uncontrolled					Controlled	
Pollutant	Emission Factor					and Limited	
l'olidiani	j\ 1	Uncontrolled				Emissions	
	product processed)	PTE (lb/hr)	Uncontrolled PTE (ton/yr)	Control Efficiency	Controlled Emissions (lb/hr)	(ton/yr)	Reduction
VOC	212.6	531.5	2328.1	98%	10.6	24.8	98.93%
CO	73.9	184.7	809.2	98%	3.7	8.6	98.93%
HAPs	82.6	206.5	904.3	98%	4.1	9.7	98.93%
CO2	67.8	169.6	742.8	0%	169.6	396.4	46.64%
CH4	51.0	127.5	558.5	98%	2.6	6.0	98.93%
CO2e	1343 0	3357.5	14705.7		NA NA	7847.1	

Emissions created by flare

Pollutant	Emission Factor (lb/ton)	Potential Emissions (lb/hr)	Potential Emissions (ton/yr)
NOx	0.48	1.2	5.2
VOC	0.98	2.5	10.8
CO	2.60	6.5	28.5
SO2	0.74	1.8	8.1
HCI	1.15	2.9	12.6
HF	0.07	0.2	0.8

Pollutant	Captured CH4 Emissions (lb/ton)	PTE (tons/yr)	GWP	Emissions (ton/yr CO2e)
CO2	51	1,505	1	1,505

Methodology

Uncontrolled PTE (ton/yr) = Emission factor (lb/ton) x Max Throughput (ton/hr) x 8760 hr/yr Controlled PTE (ton/yr) = Unontrolled PTE (ton/yr) x (1 - Control Eff.) Limited PTE (ton/yr) = Emission factor (lb/ton) x Limited Throughput (ton/yr) x 1 ton/2000 lb Limited and Controlled PTE (ton/yr) = Limited PTE (ton/yr) x (1 - Control Eff.) Page 7 of 24 TSD App A

Appendix A: Emission Calculations Tank VOC Emissions

Company Name: Tradebe Treatment and Recycling LLC
Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312
Permit Number: T089-35879-00345
Reviewer: Dominic Williams

			Keviewei.	Thin the trimation							
ID Item description	Tank 81	Tank 82	Tank 83	Tank 84	Tank 85	Tank 87	Tank 86	F-02	F-01	Tank 88	7
							Process				1
							Water/Light				
	Oil/Solvent	Oil/Solvent	Oil/Solvent			Oil/Solvent	Sludge Waste		Oil Water	Clean In Place -	.
	Product Storage F	Product Storage	Product Storage	Oil/Solvent Product Storage	Process Water	Storage	Storage	VRU Interceptor	Separator	Acetone*	
ack ID	SDS # 08	SDS II 08	SDS II 08	SDS # 08	SDS II 07	SDS II 06	SDS II 06	SDS II 03	SDS II 03	SDS II 06	
											1
Fank/Vessel nominal Capacity	Gal 12000	12000	12000	12000	22000	22000	22000	3700	22000	540	
	Vertical,	Vertical,	Vertical,		Vertical,	Vertical,	Vertical,	Fabricated, flat	Fabricated, flat		1
	cylindrical, cone of	cylindrical, cone	cylindrical, cone		cylindrical, cone	cylindrical, cone	cylindrical, cone	sided process	sided process	Vertical Fixed	
Гуре	bottom	bottom	bottom	Vertical, cylindrical, cone bottom	bottom	bottom	bottom	vessel	vessel	Roof	1
leight	Inches 300	300	300	300	380	380	380	75 approx	110 approx	64	
Diameter	Inches 120	120	120	120	138	138	138	N/A	N/A	42	1
.ength	Inches N/A	N/A	N/A	N/A	N/A	N/A	N/A	180 average	450 average	90 average	
Vidth	Inches N/A	N/A	N/A	N/A	N/A	N/A	N/A	63 average	105 average	N/A	
licipated throughput:											
IS gallons/day	1000	1000	1000	1000	3500	2000	3500			36	1
evel	Variable	Variable	Variable	Variable	Variable	Variable	Variable	Fixed ~85%	Fixed ~90%	Variable	1
nk material	Carbon Steel	Carbon Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	1
nk color	White	White	Self Colour	Self Colour	Self Colour	Self Colour	Self Colour	Self Colour	Self Colour	White	1
nting to carbon	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	1
rnovers per year	30.4	30.4	30.4	30.4	58.1	33.2	58.1	24.0	24.0	26.0	1
of Type (Cone/Dome)	Cone	Cone	Cone	Cone	Cone	Cone	Cone	Cone	Cone	Cone	1
ight (feet)	2	2	2	2	2	2	2	2	2	1.25	1
of Slope	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.71	1
eather Vent Settings (psig)	Vacuum -0.045	-0.045	-0.045	-0.045	-0.045	-0.045	-0.045	-0.03	-0.03	-0.03	1
eather Vent Settings (psig)	Pressure 0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.03	0.03	0.24	1
e Selection	Chicago, IL	Chicago, IL	Chicago, IL	Chicago, IL	Chicago, IL	Chicago, IL	Chicago, IL	Chicago, IL	Chicago, IL	Chicago, IL	1
nk Contents	Toluene	Toluene	Toluene	Toluene	40% toluene	Toluene	40% toluene	50% Toluene	50% Toluene	Acetone*	1
orking Losses (lbs)	211.33	211.33	211.47	211.47	462.63	433.85	518.53	37.70	219.91	41.03	1
eathing Losses (lbs)	9.54	9.54	9.54	9.54	20.65	24.59	24.59	5.54	16.93	4.65	
tal VOC Emissions (lbs)	220.87	220.87	221.01	221.01	483.28	458.44	543.12	43.24	236.84	0	1
otal VOC Emissions (tpy) - Maximum Uncontrolled	0.110	0.110	0.111	0.111	0.242	0.229	0.272	0.022	0.118	0	1.32 Tota
OC Control Efficiency	98.0%	98.0%	98.0%	98.0%	98.0%	98.0%	98.0%	98.0%	98.0%	none	1
											1
otal VOC Emissions (tpv) - Maximum Controlled	0.0022	0.0022	0.0022	0.0022	0.0048	0.0046	0.0054	0.0004	0.0024	_	0.03 Total

Page 8 of 24 TSD App A

Emissions calculated from EPA TANKS data
*Acetone is not a volatile organic compound (VOC) or hazardous air pollutant (HAP). Acetone was exempted from the definition of volatile organic compounds (VOC) under 40 CFR 51.100 (Definitions).

Page 9 of 24 TSD App A

EPA-R5-2018-009810_0000179

Appendix A: Emission Calculations **Cooling Tower**

Company Name: Tradebe Treatment and Recycling LLC Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312

Permit Number: T089-35879-00345 Reviewer: Dominic Williams

Stack ID Insignficant

Source Name **Cooling Tower**

Operating Parameters							
Water Circulation Rate of all cells (R)	1,200	gpm					
Total Liquid Drift (S)	0.005	%					
Density of Water (D)	8.3453	lb/gal					
Expected TDS/TSS of Circulated Water (C)	5000	ppmw					
On a making a Times.	24	(hr/day)					
Operating Time:	8760	(hr/year)					

Dollutont	Emission Factor	Unit	Emission Rate			
Pollutant	Emission Factor	l our	(lb/hr)	(tpy)	Note	
PM	2.09E-03	lb/10^3 gal	0.15	0.66	1	
PM10	29.97	% of PM	0.05	0.20	2	
PM2.5	0.18	% of PM	2.65E-04	1.16E-03	2	

Notes:

 $(1) \ USEPA \ AP-42, \ Chapter \ 13.4 \ \textit{Wet Cooling Towers} \ , \ Table \ 13.4-1 \ [EF \ (lb/1000 \ gal) = 1,000*D*(S/100)*(C/1,000,000)]$

(2) Calculating Realistic PM10 Emissions from Cooling Towers, Joel Reisman and Gordon Frisbie, Environmental Progress (Vol 21, No 2), July 2002

Max TDS = 5,000	ppmw
-----------------	------

					Solid	EPRI %	
EPRI Droplet	Droplet	Droplet	Particle Mass	Solid Particle	Particle	Mass	
Diameter	Volume	Mass	(solids)	Volumne	Diameter	Smaller	
(µm)	(µm³)	(µg)	(µg)	(µm³)	(µm)		
10	524	5.24E-04	2.62E-06	1.19	1.315	0.000	
				Interpolation>	2.500	0.177	0.177 % of PM is PM2.5
20	4189	4.19E-03	2.09E-05	9.52	2.630	0.196	
30	14137	1.41E-02	7.07E-05	32.13	3.944	0.226	
40	33510	3.35E-02	1.68E-04	76.16	5.259	0.514	
50	65450	6.54E-02	3.27E-04	148.75	6.574	1.816	
60	113097	1.13E-01	5.65E-04	257.04	7.889	5.702	
70	179594	1.80E-01	8.98E-04	408.17	9.203	21.348	
				Interpolation>	10.000	29.971	29.971 % of PM is PM10
90	381704	3.82E-01	1.91E-03	867.51	11.833	49.812	
110	696910	6.97E-01	3.48E-03	1583.89	14.462	70.509	
130	1150347	1.15E+00	5.75E-03	2614.42	17.092	82.023	
150	1767146	1.77E+00	8.84E-03	4016.24	19.722	88.012	
180	3053628	3.05E+00	1.53E-02	6940.06	23.666	91.032	
210	4849048	4.85E+00	2.42E-02	11020.56	27.610	92.468	
240	7238229	7.24E+00	3.62E-02	16450.52	31.554	94.091	
270	10305995	1.03E+01	5.15E-02	23422.72	35.499	94.689	
300	14137167	1.41E+01	7.07E-02	32129.92	39.443	96.288	
350	22449298	2.24E+01	1.12E-01	51021.13	46.017	97.011	
400	33510322	3.35E+01	1.68E-01	76159.82	52.591	98.34	
450	47712938	4.77E+01	2.39E-01	108438.50	59.165	99.071	
500	65449847	6.54E+01	3.27E-01	148749.65	65.738	99.071	
600	113097336	1.13E+02	5.65E-01	257039.40	78.886	100.000	

Calculations based on approach presented in: Calculating Realistic PM10 Emissions from Cooling Towers Joel Reisman and Gordon Frisbie, Environmental Progress (Vol 21, No 2), July 2002

Appendix A: Emissions Calculations VOC and HAP From HWF Tank Storage (Unit 1)

Company Name: Tradebe Treatment and Recycling LLC
Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312
Permit Number: T089-35879-00345

Reviewer: Dominic Williams

			[Unscaled			Scaled (up to 5	52 wk/yr)
	Capacity	Actual Throughput		Uncontrolled VOC Emissions, lb/yr		Controlled VOC Emissions,	Uncontrolled VOC Emissions, lb/yr	Uncontrolled VOC/HAP Emissions,	Controlled VOC/HAP
Tank #	(gal)	(gpy)	Max Throughput (gpy)	(TANKS 4.0)	Uncontrolled VOC Emissions, ton/yr	ton/yr	(TANKS 4.0)	ton/yr	Emissions, ton/yr
29°	20,057	501,425	1,002,850	1,933	0.97	0.010	2,010	1.01	0.010
1R	12,690		1,625,000	1,432	0.72	0.007	1,432	0.72	0.007
4	12,690		1,625,000	1,432	0.72	0.007	1,432	0.72	0.007
18	20,353		1,625,000	2,027	1.01	0.010	2,027	1.01	0.010
19	20,353		1,625,000	2,027	1.01	0.010	2,027	1.01	0.010
20	20,353		1,625,000	2,027	1.01	0.010	2,027	1.01	0.010
21	20,353		1,625,000	2,027	1.01	0.010	2,027	1.01	0.010
22	20,353		1,625,000	2,027	1.01	0.010	2,027	1.01	0.010
23	20,353		1,625,000	2,027	1.01	0.010	2,027	1.01	0.010
6	4,386		228,072	424	0.21	0.002	424	0.21	0.002
7	2,900		150,800	275	0.14	0.001	275	0.14	0.001
			TOTAL ALL TANKS	17,658	8.83	0.088	17,735	8.87	0.089

^asource assumed one turnover per week, 50 weeks per year. Emissions from this tank are scaled up to 52 weeks per year.

Note: Above calcultions are from pemit number T 089-29424-00345, issued on February 25, 2011.

Page 10 of 24 TSD App A

Area 2 Receiving and Shipping and Area 8/10 Receiving and Shipping

Area 2 Receiving and Shipping, consisting of Area 2 truck dock (Area 1, Area 2 and rail line slots 1-7) Area 8/10 Receiving and Shipping, consisting of Area 8/10 (Area 8 truck dock and rail line slots 8-10)

VOC emissions are estimated using following equation, from Section 5.2 of AP-42:

L_L = 12.46 * (S*P*M)/T

LL = Loading loss per kgal liquid loaded

S = saturation factor (from Table 5.2-1 of AP-42)

P = true vapor pressure of liquid load (psia)

M = molecular weight of vapors (lb/lb-mole)

T = temperature of bulk liquid loaded (deg. R)

Methodology:

Maximum Throughput (gal/year) = Maximum Throughput (gal/hour) x 8760 hours/year

Potential VOC/HAP (Before Control) (ton/yr) = Loading Loss Emission Factor (lb/kgal) * (kgal/1000 gal) x Maximum Throughput (gal/year) x ton/2000 lb

Limited VOC/HAP Emissions (ton/year) (Before Control) = Loading Loss Emission Factor (lb/kgal) *(kgal/1000 gal) x Limited Throughput (gal/year) x ton/2000 lb

*As a worst case scearnio, VOC emissions are assumed to be 100% Toluene (HAP).

EPA-R5-2018-009810_0000179

Appendix A: Emissions Calculations VOC and HAP Area 2 Receiving and Shipping and Area 8/10 Receiving and Shipping

Company Name: Tradebe Treatment and Recycling LLC
Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312
Permit Number: T089-35879-00345
Reviewer: Dominic Williams

S = P = M = T =	0.6 0.97 75 530	Submerged loading: dedicated normal service psia lb/lb-mole R (70 oF)	
Loading Loss Emission Factor, $L_L =$	1.03	lb VOC/kgal	
Area O Describing and Chinning Maying up. Throughout	Area 2 Receiving and Shipping	Area 8/10 Receiving and Shipping	~~! /b~~. v
Area 2 Receiving and Shipping Maximum Throughput = Area 2 Receiving and Shipping Maximum Throughput =	13,200 115,632,000		gal/hour gal/year
Area 2 Potential VOC/HAP (Before Control)* =	59.3		tons/year
Carbon Canister VOC Control Efficiency =	98.0%	98.0%	,
Area 2 Potential VOC/HAP (After Control)* =	1.19	1.55	tons/year
Area 2 Receiving and Shipping Limited Throughput =	41, 450, 000	41,450,000	gal/year
Limited VOC/HAP Emissions (Before Control)* =	21.3	21.3	tons/year

Page 11 of 24 TSD App A

Appendix A: Emissions Calculations VOC and HAP Hydropulper Tank (Tank 24HP)

Company Name: Tradebe Treatment and Recycling LLC
Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312

Permit Number: T089-35879-00345
Reviewer: Dominic Williams

ydropulper Tank (Tank 24HF ank 24HP is operated on a b	patch process. The tank is filled, and then pur	nped into other tanks in Area 2.			2,310	nax production) gallons (workin		
					6 385	hrs (to fill) gals/hr		
Dimensions								
	diameter	sidewall	dome	bottom				
	9	6	1.5	1.5	l ma	x production (w	orst case emis	sions) annual
volume	3,010							,
volume working	2,310				38 840	5 gals/hr 1 # Hrs /Yr (SER	VICE FACTOR	?)
HP24 Throughput (in	gallons)				3,234,32	3 gals/yr		
	hourly	annual						
PTE	385	3,234,323						
HP 24 filled	6	hours						
contents transferred	0.33	hours						
service factor calculation	on							
	7.67 hrs process, .33 hrs transfer from H 7.67 / 8 = 95.9 % operation	P 24 to Area						
	8760 x	95.90%	=	8401 hours o	of operation / yea	ar		
check service factor								
385	8760	95.90%		3,234,323 gals /yr				
oduction based "ACTUAI	L" numbers							
2013 11 months	lbs/gal	gallons		gals/n	nth	gals/ yr cal	hrs /yr	gals/hr
8,367,368	8.34	1,003,282	1	11 91,20		1,094,489	2944	372
	gals	time to empty		gals/min				
	2310 /	20	=	115.5				

Potential Emissions

2310 gallons per filling event 3,234,323 max gallons per year 1400 max filling events per year

Compute emissions using liquid loading loss equation from AP-42 Section 5.2

LL = 12.46 (S*P*M)/T

where:

LL = Liquid loading uncontrolled emission factor in lb/1000 gallons

S = Saturation Factor (use worst case factor of 1.45)

P = true vapor pressure (use worst case factor for tolune of 0.435 @ 70 deg F)

M = molecular weight of vapors (use mw of toluene, 92.13)

T = Temperature of liquid (deg R) (assume ambient temp of 70 deg F, 530 deg R)

LL = 1.37 lb/1000 gal
Annual uncontrolled emissions = 4418.6 lbs/yr
2.21 tons/yr

Annual Controlled Emissions = 98% (controlled using carbon canisters; assumed 98% efficient)

88.4 lbs/yr 0.022 tons/yr Page 12 of 24 TSD App A

Page 13 of 24 TSD App A

3.06

Appendix A: Emissions Calculations
VOC and HAP
Unit 4 (Lab Pack Booths 1 and 4)

Company Name: Tradebe Treatment and Recycling LLC
Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312

Permit Number: T089-35879-00345
Reviewer: Dominic Williams

Emissions from organic liquid depacking (Lab Pack Booth 1 of Unit 4)

Organic liquids are depacked in Lab Pack Booth 1.

Max 27375 containers/yr

Assumptions^a:

75.5 gal/hr

7.5 lb/gal average density of depacked liquids

75.5 gal/hr *

Uncontrolled emissions were expected to be low (materials are not agitated, heated, or exposed for long periods of time).

Estimate of emissions as % of quantity depacked:

0.56625 lb VOC/hr 2.48 TPY VOC/HAP uncontrolled

Estimated control efficiency of carbon adsorber packs:

0.10%

0.1% =

0.05 TPY VOC/HAP controlled

7.5 lb/gal *

Emissions from the packing of dry chemicals (Lab Pack Booth 4 of Unit 4) - insignificant activity

Baghouse information:

Amount of particulate captured by baghouse per year:	275 lbs
Operating schedule of baghouse:	2,080 hrs/yr
Estimated capture efficiency of baghouse:	99.90%

(8 hrs/day, 5 days/week, 52 weeks/yr)

98%

Calculations:

Amount of particulate captured by baghouse per 8,760 hrs:

275 lbs * (8,760 hrs/yr)/(2,080 hrs/yr) * 1 ton/2,000 lbs = 0.58 tons PM/yr

Estimated uncontrolled particulate emissions per 8,760 hours:

0.58 tons PM/yr / (1/0.999) =

0.58 tons PM/yr uncontrolled

Estimated controlled particulate emissions per 8,760 hours:

0.58 tons PM/yr * (1 - 0.999) =

0.0006 tons PM/yr controlled

Note: Above calcultions are from pemit number T 089-29424-00345, issued on February 25, 2011.

^a These figures are estimates. Lab Pack Booth 1 can also vent gaseous emissions from cylinders. However, the depacking of organic liquids is a worst case emissions scenario and therefore presented here.

Appendix A: Emissions Calculations VOC from Degassing Operation

Company Name: Tradebe Treatment and Recycling LLC

Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312

Permit Number: T089-35879-00345
Reviewer: Dominic Williams

Emissions from Degassing Unit (After installation of flare)

	Maximum	Maximum			Potential HAP		Potential VOC	
	Gas VOC	Gas HAP	VOC/HAP		Emissions Before	Flare Control	Emissions After	Potential HAP Emissions
Туре	Throughput*	Throughput*	Absorbed	Potential VOC Emissions Before Flare Control	Flare Control	Efficiency	Flare Control	After Flare Control
	ton/yr	ton/yr	%	(tons/yr)	(tons/yr)	%	(tons/yr)	(tons/yr)
Absorbable organics	396.8	14.1	98%	7.9	0.28	98%	0.2	0.01
Light end hydrocarbons	9.0		0%	9.0		98%	0.2	
Totals:	405.8			17.0			0.3	0.01

Emissions from Degassing Unit (Prior to installation of flare)

					Potential HAP		Potential VOC	
	Maximum	Maximum			Emissions Before		Emissions After	Potential HAP Emissions
	Gas VOC	Gas HAP	VOC/HAP	Potential VOC Emissions Before Carbon Adsorber	Carbon Adsorber	Carbon Adsorber	Carbon Adsorber	After Carbon Adsorber
Unit	Throughput*	Throughput*	Absorbed	Control	Control	Unit Efficiency	Control	Control
	ton/yr	ton/yr	%	(tons/yr)	(tons/yr)	%	(tons/yr)	(tons/yr)
Degassing	198.4	3.1	98%	4.0	0.06	98%	0.1	0.00

^{*}Estimated maximum throughput provided by source based on historic mix of actual cylinders processed. 'Absorbable' gases processed include organic, inorganic, halogenated and inert.

Potential VOC/HAP Emissions Before Flare Control (ton/yr) = Maximum Gas Throughput VOC/HAP (ton/yr) x (1 -VOC/HAP Condensed (%))

Potential VOC/HAP Emissions After Flare Control (ton/yr) = Potential VOC/HAP Emissions Before Flare Control (ton/yr) * (1 - Flare Control Effiency)

Note: Inorganic HAPs are Chlorine and Fluorine and Organic HAPs include 1,3 butadiene, ethylene oxide and others.

Note: The degassing operation includes a reactor tank into which gasses are vented and a pressurized "shock" tank that will condense gasses into liquids for collection and offsite shipment, with remaining gasses controlled by a flare or carbon cannisters.

Note: The use of a flare control system allows cylinders to be degassed more quickly, as the flare can handle a higher air flow rate than is possible with carbon canisters. Further increases in throughput could only be accomplished through a change to a larger reactor or by the installation of a flare that could handle a higher air flow rate.

Note: The addition of a flare control system now allows for the degassing of cylinders containing light end hydrocarbons. These gases are not absorbed into liquid by the shock tank, and therefore assumed to be 100% emitted as VOC (0% absorbed).

Page 14 of 24 TSD App A

EPA-R5-2018-009810_0000179

Appendix A: Emission Calculations

VOC and HAP From the SDS Shredder (SDS)

Company Name: Tradebe Treatment and Recycling LLC
Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312
Permit Number: 7089-35879-00345

Reviewer: Dominic Williams

From the SDS Shredder (SDS)

Process Description:

Max. Throughput Rate: VOC Emission Factor:

4.0 tons/hr 0.15 lbs/ton

(This is provided by the source, based on the stack test results from a similar unit)

Control Equipment: Carbon Adsorption System for VOC/HAP Control Control Efficiency:

98.0%

Potential to Emit VOC/HAP before Control:

Assume all the VOC emissions are equal to HAP emissions because the HAP contents in the received waste very greatly.

PTE of VOC/HAP before Control = 4 tons/hr x 0.15 lbs/ton x 8760 hr/yr x 1 ton/2000 lbs =

2.63 tons/yr

0.05 tons/yr

Page 15 of 24 TSD App A

Potential to Emit VOC/HAP after Control:

PTE of VOC/HAP after Control = 4 tons/hr x 0.15 lbs/ton x 8760 hr/yr x 1 ton/2000 lbs x (1-98%) =

Limited SDS Shredder VOC

0.028 **0.12** lb/hr ton/yr

From the SDS Shaker and conveyor Potential to Emit PM After Control:

	Maximum Air Flow (acfm)	Design Outlet Grain Loading (gr/acf)	Overall control efficiency	After Control Emissions (lb/hr)			Before Control Emission
Unit					After Control Emissions (ton/yr)	s (lb/hr)	s (ton/yr)
SDS 04	4400	0.03	90%	1.13	5.0	11.31	49.6
SDS 09	2500	0.03	90%	0.64	2.8	6.43	28.2
Total					7.8		77.7

Note: These emissions were previously calculated based on maximum air flow of 500 acfm.

Assume all the PM emissions are equal to PM10 emissions.

Page 16 of 24 TSD App A

Appendix A: Emission Calculations

Natural Gas Combustion

(MMBtu/hr < 100)

From the NG Combustion in Anaerobic Thermal Desorption Unit (ATDU)

Company Name: Tradebe Treatment and Recycling LLC Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312

Permit Number: T089-35879-00345 Reviewer: Dominic Williams

Heat Input Capacity MMBtu/hr 15.6

Potential Throughput	
MMCF/yr	
136.7	

		Pollutant								
	PM*	PM10*	PM2.5	SO ₂	**NO _x	VOC	со			
Emission Factor in lb/MMCF	1.9	7.6	7.6	0.6	100	5.5	84.0			
Potential to Emit in tons/yr	0.13	0.52	0.52	0.04	6.83	0.38	5.74			

^{*}PM and PM10 emission factors are condensable and filterable PM10 combined.

Emission factors are from AP-42, Chapter 1.4, Tables 1.4-1, 1.4-2,

and 1.4-3, SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03

(AP-42 Supplement D 3/98)

Methodology

All Emission factors are based on normal firing.

MMBtu = 1,000,000 Btu

MMCF = 1,000,000 Cubic Feet of Gas

Potential Throughput (MMCF/yr) = Heat Input Capacity (MMBtu/hr) x 8,760 hrs/yr x 1 MMCF/1,000 MMBtu Potential to Emit (tons/yr) = Potential Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton Note: Above calcultions are from pemit number T 089-29424-00345, issued on February 25, 2011.

HAPS Calculations

		HAPs - Organics							
	Benzene	Dichlorobenzene	Formaldehyde	Hexane	Toluene	Total - Organics			
Emission Factor in lb/MMcf	2.10E-03	1.20E-03	7.50E-02	1.80E+00	3.40E-03				
Potential Emission in tons/yr	1.4E-04	8.2E-05	5.1E-03	0.12	2.3E-04	0.13			

		HAPs - I	Metals			
	Lead	Cadmium	Chromium	Manganese	Nickel	Total - Metals
Emission Factor in lb/MMcf	5.00E-04	1.10E-03	1.40E-03	3.80E-04	2.10E-03	
Potential Emission in tons/yr	3.4E-05	7.5E-05	9.6E-05	2.6E-05	1.4E-04	3.7E-04
					Total HAPs	0.13
Methodology is the same as above.					Worst HAP	0.12

Methodology is the same as above.

The five highest organic and metal HAPs emission factors are provided above.

Additional HAPs emission factors are available in AP-42, Chapter 1.4.

Greenhouse Gas Calculations

		Greenhouse Gas*	
	CO2	CH4	N2O
Emission Factor in lb/MMcf	120,000	2.3	2.2
Potential Emission in tons/yr	8,199	0	0
Summed Potential Emissions in tons/yr		8,200	
CO2e Total in tons/yr		8,248	

Methodology

The N2O Emission Factor for uncontrolled is 2.2. The N2O Emission Factor for low Nox burner is 0.64.

Emission Factors are from AP 42, Table 1.4-2 SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03.

Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

Emission (tons/yr) = Throughput (MMCF/yr) \times Emission Factor (lb/MMCF)/2,000 lb/ton

*CO2e (tons/yr) based on 11/29/2013 federal GWPs= CO2 Potential Emission ton/yr x CO2 GWP (1) + CH4 Potential Emission ton/yr x CH4 GWP (25) + N2O Potential Emission ton/yr x N2O GWP (298).

^{**}Emission Factors for NO_x : Uncontrolled = 100.

Appendix A: Emission Calculations
VOC and HAP Emissions From the Distillation Unit

Company Name: Tradebe Treatment and Recycling LLC
Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312
Permit Number: T089-35879-00345
Dominic Williams

Process Description:

Max. Throughput Rate:
VOC Emission Factor:
Control Equipment: Carbon Adsorption System for VOC/HAP Control
Control Efficiency: 1.0 ton/hr 0.52 lbs/ton (This is provided by the manufacturer)

98.0%

Potential to Emit VOC/HAP before Control:

Assume all the VOC emissions are equal to HAP emissions because the HAP contents in the received waste very greatly.

PTE of VOC/HAP before Control = 1 tons/hr x 0.52 lbs/ton x 8760 hr/yr x 1 ton/2000 lbs =

2.28 tons/yr

Potential to Emit VOC/HAP after Control:

PTE of VOC/HAP after Control = 1 tons/hr x 0.52 lbs/ton x 8760 hr/yr x 1 ton/2000 lbs x (1- 98%) =

0.05 tons/yr

Page 17 of 24 TSD App A

Note: Above calcultions are from pemit number T 089-29424-00345, issued on February 25, 2011.

Limited Distillation Unit

ton/yr 0.014

0.06

Page 18 of 24 TSD App A

Appendix A: Emission Calculations Tank VOC Emissions

Company Name: Tradebe Treatment and Recycling LLC Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312

Permit Number: T089-35879-00345
Reviewer: Dominic Williams

Emission	Tank Volume	Working Loss	Breathing Loss VOC Total Emissions					3	
Unit	Gallons	lbs/year	lbs/year	lbs/year TP		Control Efficiency	Controlled TPY	lbs/day	lbs/hr
52	12,000	77.8	0.0	77.8	0.04	98%	0.001	0.21	0.01
53	12,000	77.8	0.0	77.8	0.04	98%	0.001	0.21	0.01
54	12,000	77.8	0.0	77.8	0.04	98%	0.001	0.21	0.01
55	20,000	646.9	206.2	853.1	0.43	98%	0.009	2.34	0.10

Tanks 52-55 Total 1086.5 0.5 0.01

Emission	Tank Volume	Working Loss	Breathing Loss VOC Total Emissions						
Unit	Gallons	lbs/year	lbs/year	lbs/year	TPY	Control Efficiency	Controlled TPY	lbs/day	lbs/hr
57	20,000	646.9	206.2	853.1	0.43	98%	0.009	2.34	0.10
58	20,000	646.9	206.2	853.1	0.43	98%	0.009	2.34	0.10
59	6,000	360.9	0.0	360.9	0.18	98%	0.004	0.99	0.04
60	6,000	360.9	0.0	360.9	0.18	98%	0.004	0.99	0.04
61	20,000	646.9	206.2	853.1	0.43	98%	0.009	2.34	0.10
62	12,000	77.8	0.0	77.8	0.04	98%	0.001	0.21	0.01
63	12,000	77.8	0.0	77.8	0.04	98%	0.001	0.21	0.01
64	12,000	77.8	0.0	77.8	0.04	98%	0.001	0.21	0.01
65	12,000	77.8	0.0	77.8	0.04	98%	0.001	0.21	0.01
66	12,000	77.8	0.0	77.8	0.04	98%	0.001	0.21	0.01
67	12,000	77.8	0.0	77.8	0.04	98%	0.001	0.21	0.01

Tanks 57-67 Total 3747.9 1.9 0.04

Methodology

Each tank uses a carbon adsorption system for control.

Note: Storage tank emissions are estimated using USEPA's Tanks 4.0.9D software program and provided by the source.

Appendix A: Emissions Calculations VOC and HAP Pot Still

Page 19 of 24 TSD App A

Company Name: Tradebe Treatment and Recycling LLC

Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312

Permit Number: T089-35879-00345 **Reviewer:** Dominic Williams

Tradebe Pot Still Minor Source Modification Emissions Calculations

2013 Pot Still Data					
Max Capacity (gal/hr)	70				
Hrs Operation (hr/yr)	6607				
Throughput (gal/yr)	326032				
VOC Adsorption Rate (lb VOC/lb carbon)	0.25				
Control Efficiency (99%)	99.0%				
Carbon Used (lbs)	10800				
Total Changeouts per year	54				
Carbon/Changeout (lbs)	200				
Actual Gallons/Hour	49.35				
Carbon Used/gal (Ibs/gal)	0.033				

Proposed Modified Unit							
Modified Capacity (gal/hr)	115						
Max Hrs Operation (hr/yr)	8760						
Max Throughput (gal/yr)	1007400						
VOC Adsorption Rate (lb VOC/lb carbon)	0.25						
Control Efficiency (98%)	98.0%						
Est Max Carbon Used (lbs)	33370.7						
Est Max Changeouts per year	166.9						
Carbon/Changeout (lbs)	200						

			Potential HAP
			Emissions
	2013 Actual Data	Potential VOC Emissions (Modified Unit)	(Modified Unit)*
Uncontrolled VOC Emissions (lbs/yr)	2700.0	8342.7	8342.7
Controlled VOC Emissions (lbs/yr)	27.0	166.9	166.9
Uncontrolled VOC Emissions (lbs/gal)	0.0083	0.0083	0.0083
Controlled VOC Emissions (lbs/gal)	8.28E-05	1.66E-04	1.66E-04

			Potential HAP Emissions
	2013 Actual Data	Potential VOC Emissions (Modified Unit)	(Modified Unit)*
Total Uncontrolled VOC Emissions (tons/yr)	1.35	4.17	4.17
Total Controlled VOC Emissions (tons/yr)	0.01	0.08	0.08

^{*}Based on conservative assumption, HAPs emissions are assumed equal to VOC emissions.

Potential to emit was back calculated from 2013 carbon usage.

Uncontrolled VOC Emissions (lbs/yr) = Total Changeouts/year x lbs carbon/Changeout x VOC Adsorption Rate (lb VOC/lb carbon)

Controlled VOC Emissions (lbs/yr) = Uncontrolled VOC Emissions (lbs/yr) * (1 - Control Efficiency)

Uncontrolled VOC Emissions (lbs/gal) = Uncontrolled VOC Emissions (lbs/yr) / Throughput (gal/yr)

Controlled VOC Emissions (lbs/gal) = Uncontrolled VOC Emissions (lbs/gal) * (1- Control Efficiency)

Total Uncontrolled VOC Emissions (tons/yr) = Total Uncontrolled VOC PTE (lbs/yr) / 2000 lbs/ton

Total Controlled VOC Emissions (tons/yr) = Total Uncontrolled VOC PTE (tons/yr) * (1- Control Efficiency)

Natural Gas Combustion (MMBtu/hr < 100)

Company Name: Tradebe Treatment and Recycling LLC

Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312

Permit Number: T089-35879-00345 Reviewer: Dominic Williams

Thin Film Evaporator

Heat Input Capacity MMBtu/hr 2.4

Potential Throughput

MMCF/yr	
21.0	

Total VOC

0.09

		Pollutant					
Combustion	PM*	PM10*	PM2.5	SO ₂	**NO _x	VOC	CO
Emission Factor in Ib/MMCF	1.9	7.6	7.6	0.6	100	5.5	84.0
Potential to Emit in tons/yr	0.02	0.08	0.08	0.01	1.05	0.06	0.88
					Additional VOC	0.03	

^{*}PM and PM10 emission factors are condensable and filterable PM10 combined.

Emission factors are from AP-42, Chapter 1.4, Tables 1.4-1, 1.4-2, and 1.4-3, SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03 (AP-42 Supplement D 3/98)

Methodology

All Emission factors are based on normal firing.

MMBtu = 1,000,000 Btu

MMCF = 1,000,000 Cubic Feet of Gas

Potential Throughput (MMCF/yr) = Heat Input Capacity (MMBtu/hr) x 8,760 hrs/yr x 1 MMCF/1,000 MMBtu

Potential to Emit (tons/yr) = Potential Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton

HAPS Calculations

		HAPs - Organics						
	Benzene	Dichlorobenzene	Formaldehyde	Hexane	Toluene	Total - Organics		
Emission Factor in lb/MMcf	2.10E-03	1.20E-03	7.50E-02	1.80E+00	3.40E-03			
Potential Emission in tons/vr	2.2E-05	1.3E-05	7.9E-04	0.02	3.6E-05	0.02		

			HAPs - Metals			
	Lead	Cadmium	Chromium	Manganese	Nickel	Total - Metals
Emission Factor in lb/MMcf	5.00E-04	1.10E-03	1.40E-03	3.80E-04	2.10E-03	
Potential Emission in tons/yr	5.3E-06	1.2E-05	1.5E-05	4.0E-06	2.2E-05	5.8E-05
					Total HAPs	0.02
Methodology is the same as above) .				Worst HAP	0.02

Methodology is the same as above.

The five highest organic and metal HAPs emission factors are provided above.

Additional HAPs emission factors are available in AP-42, Chapter 1.4.

Greenhouse Gas Calculations

	Greenhouse Gas*				
	CO2	CH4	N2O		
Emission Factor in lb/MMcf	120,000	2.3	2.2		
Potential Emission in tons/yr	1,261	0.02	0.02		
Summed Potential Emissions in tons/yr		1,261			
CO2e Total in tons/yr		1,269			

Methodology

The N2O Emission Factor for uncontrolled is 2.2. The N2O Emission Factor for low Nox burner is 0.64.

Emission Factors are from AP 42, Table 1.4-2 SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03.

Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

Emission (tons/yr) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton

*CO2e (tons/yr) based on 11/29/2013 federal GWPs= CO2 Potential Emission ton/yr x CO2 GWP (1) + CH4 Potential Emission ton/yr x CH4 GWP (25) + N2O Potential Emission ton/yr x N2O GWP (298).

Page 20 of 24 TSD App A

^{**}Emission Factors for NO_x : Uncontrolled = 100.

Natural Gas Combustion (MMBtu/hr < 100)

Company Name: Tradebe Treatment and Recycling LLC Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312

Permit Number: T089-35879-00345 **Reviewer:** Dominic Williams

Hot Oil Heater

Heat Input Capacity MMBtu/hr 2.5

Potential Throughput MMCF/yr 21.9

0.08

	Pollutant				
PM10*	PM2.5	SO ₂	**NO _×	VOC	co
7.6	7.6	0.6	100	5.5	84.0

0.01

1.10

0.06

PM*

1.9

Emission factors are from AP-42, Chapter 1.4, Tables 1.4-1, 1.4-2, and 1.4-3, SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03 (AP-42 Supplement D 3/98)

Methodology

All Emission factors are based on normal firing.

MMBtu = 1,000,000 Btu

Emission Factor in lb/MMCF

MMCF = 1,000,000 Cubic Feet of Gas

Potential Throughput (MMCF/yr) = Heat Input Capacity (MMBtu/hr) x 8,760 hrs/yr x 1 MMCF/1,000 MMBtu

0.08

Potential to Emit (tons/yr) = Potential Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton

HAPS Calculations

		HAPs - Organics							
	Benzene	Dichlorobenzene	Formaldehyde	Hexane	Toluene	Total - Organics			
Emission Factor in lb/MMcf	2.10E-03	1.20E-03	7.50E-02	1.80E+00	3.40E-03				
Potential Emission in tons/yr	2.3E-05	1.3E-05	8.2E-04	0.02	3.7E-05	0.02			

			HAPs - Metals			
	Lead	Cadmium	Chromium	Manganese	Nickel	Total - Metals
Emission Factor in lb/MMcf	5.00E-04	1.10E-03	1.40E-03	3.80E-04	2.10E-03	
Potential Emission in tons/yr	5.5E-06	1.2E-05	1.5E-05	4.2E-06	2.3E-05	6.0E-05
					Total HAPs	0.02
Methodology is the same as above	e.				Worst HAP	0.02

The five highest organic and metal HAPs emission factors are provided above.

Additional HAPs emission factors are available in AP-42, Chapter 1.4.

Greenhouse Gas Calculations

	Greenhouse Gas*			
	CO2	CH4	N20	
Emission Factor in lb/MMcf	120,000	2.3	2.2	
Potential Emission in tons/yr	1,314	0.03	0.02	
Summed Potential Emissions in tons/yr		1,314		
CO2e Total in tons/yr		1,322		

Methodology

The N2O Emission Factor for uncontrolled is 2.2. The N2O Emission Factor for low Nox burner is 0.64.

Emission Factors are from AP 42, Table 1.4-2 SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03.

Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

Emission (tons/yr) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton

*CO2e (tons/yr) based on 11/29/2013 federal GWPs= CO2 Potential Emission ton/yr x CO2 GWP (1) + CH4 Potential Emission ton/yr x CH4 GWP (25) + N2O Potential Emission ton/yr x N2O GWP (298).

Page 21 of 24 TSD App A

0.92

Potential to Emit in tons/yr 0.02 *PM and PM10 emission factors are condensable and filterable PM10 combined.

^{**}Emission Factors for NO_x : Uncontrolled = 100.

EPA-R5-2018-009810_0000179

Page 22 of 24 TSD App A

Appendix A: Emissions Calculations Fugitive PM From Paved/Unpaved Roads and Storage Piles

Company Name: Tradebe Treatment and Recycling LLC
Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312
Permit Number: T089-35879-00345

Reviewer: Dominic Williams

Truck Dumping E = k(0.0032) * (U/5)^M.3 / (W/2)^M.4

E = Emission Factor (lbs/ton)

 0.35 particle size multilplier for PM-10
 0.74 particle size multilplier for PM
 10.3 mean wind speed (mph)
 5 material moisture content (fraction) M =

PM Emission Factor: E = 0.00168 lb/ton

PM-10 Emission Factor: $E = (0.35)(0.0032) * (12.7/5)^1.3 / (10\%/2)^1.4$

0.00079 lb/ton

Annual potential amount of dry material delivered by truck = Potential PM Emissions (tons/year) = 1980 tpy Emission factor (lb/ton) * Gypsum delivered (tpy) / 2000 (lbs/ton) Potential PM Emissions (tons/year) =
Potential PM-10 Emissions (tons/year) =
Potential PM-10 Emissions (tons/year) = 0.0017 tpy Emission factor (lb/ton) * Gypsum delivered (tpy) / 2000 (lbs/ton) 0.0008 tpy

Paved Roads
Maximum Vehicular Speed:
Average Distance of Haul: 5 mph 0.15 miles

Vehicle Type	No. of One Way Trips per Hour	Weight
Tanker	0.29	37.5
Vans	0.25	35
Roll Off Boxes	0.08	35
Dump Truck	0.04	37.5
total	0.66	

Weighted Average Gross Weight: Calculations: 36.25 tons

 $E = k(sL/2)^0.65 * (W/3)^1.5$ Emission factor (lbs/vehicle miles traveled(VMT)) E = 0.016 particle size multiplier for PM-10 0.082 particle size multiplier for PM k =

3 road surface silt content (g/m^2)
36.25 weighted average vehicle weight (tons) (calculate from table above) sL W

source: AP-42, chapter 13.2.1, p. 13.2.1-6. VMT= 867.24 (miles/yr)

4.48 lbs/VMT Potential PM Emissions (ton/yr) = Potential PM Emissions (ton/yr) = Emission factor (lbs/VMT) * VMT / 2000 (lbs/ton)

1.94 tpy <u>PM-10</u> 0.87 lbs/VMT

Potential PM-10 Emissions (ton/yr) = Potential PM-10 Emissions (ton/yr) = Emission factor (lbs/VMT) * VMT / 2000 (lbs/ton) 0.38 tpy

Page 23 of 24 TSD App A

Appendix A: Emission Calculations Large Reciprocating Internal Combustion Engines - Diesel Fuel Output Rating (>600 HP) Maximum Input Rate (>4.2 MMBtu/hr)

Diesel-Fired Emergency Generator (G1)

Company Name: Tradebe Treatment and Recycling LLC Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312

Permit Number: T089-35879-00345 Reviewer: Dominic Williams

Output Horsepower Rating (hp) 896.0 500 Maximum Hours Operated per Year Potential Throughput (hp-hr/yr) 448,000 Sulfur Content (S) of Fuel (% by weight) 0.500

Diesel-Fired Emergency Generator (G1)

	Pollutant							
	PM*	PM10*	direct PM2.5*	SO2	NOx	VOC	co	
Emission Factor in lb/hp-hr	7.00E-04	4.01E-04	4.01E-04	4.05E-03	2.40E-02	7.05E-04	5.50E-03	
				(.00809S)	**see below			
Potential Emission in tons/yr	0.16	0.09	0.09	0.91	5.38	0.16	1.23	

^{*}PM10 emission factor in lb/hp-hr was calculated using the emission factor in lb/MMBtu and a brake specific fuel consumption of 7,000 Btu / hp-hr (AP-42 Table 3.3-1).

Hazardous Air Pollutants (HAPs)

		Pollutant								
							Total PAH			
	Benzene	Toluene	Xylene	Formaldehyde	Acetaldehyde	Acrolein	HAPs***			
Emission Factor in lb/hp-hr****	5.43E-06	1.97E-06	1.35E-06	5.52E-07	1.76E-07	5.52E-08	1.48E-06			
Potential Emission in tons/yr	1.22E-03	4.41E-04	3.03E-04	1.24E-04	3.95E-05	1.24E-05	3.32E-04			

^{***}PAH = Polyaromatic Hydrocarbon (PAHs are considered HAPs, since they are considered Polycyclic Organic Matter)

Methodology

Emission Factors are from AP 42 (Supplement B 10/96) Tables 3.4-1, 3.4-2, 3.4-3, and 3.4-4.

Potential Throughput (hp-hr/yr) = [Output Horsepower Rating (hp)] * [Maximum Hours Operated per Year]

Potential Emission (tons/yr) = [Potential Throughput (hp-hr/yr)] * [Emission Factor (lb/hp-hr)] / [2,000 lb/ton]

Potential Emission of Total HAPs (tons/yr)	2.47E-03

Green House Gas Emissions (GHG)

		Pollutant	
	CO2	CH4	N2O
Emission Factor in lb/hp-hr	1.16E+00	6.35E-05	9.30E-06
Potential Emission in tons/yr	260	1.42E-02	2.08E-03

Summed Potential Emissions in tons/yr	260
CO2e Total in tons/yr	261

Methodology

Emission Factors are from AP 42 (Supplement B 10/96) Tables 3.4-1 , 3.4-2, 3.4-3, and 3.4-4.

CH4 and N2O Emission Factor from 40 CFR 98 Subpart C Table C-2.

Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

Potential Throughput (hp-hr/yr) = [Output Horsepower Rating (hp)] * [Maximum Hours Operated per Year] $Potential\ Emission\ (tons/yr) = [Potential\ Throughput\ (hp-hr/yr)] * [Emission\ Factor\ (lb/hp-hr)] / [2,000\ lb/ton]$

CO2e (tons/yr) = CO2 Potential Emission ton/yr x CO2 GWP (1) + CH4 Potential Emission ton/yr x CH4 GWP (25) + N2O Potential Emission ton/yr x N2O GWP (298).

^{**}NOx emission factor: uncontrolled = 0.024 lb/hp-hr, controlled by ignition timing retard = 0.013 lb/hp-hr

^{****}Emission factors in lb/hp-hr were calculated using emission factors in lb/MMBtu and a brake specific fuel consumption of 7,000 Btu / hp-hr (AP-42 Table 3.3-1).

Appendix A: Emission Calculations Reciprocating Internal Combustion Engines - Natural Gas 4-Stroke Lean-Burn (4SLB) Engines Natural Gas-Fired Emergency Generator (G3)

Company Name: Tradebe Treatment and Recycling LLC Source Address: 4343 Kennedy Avenue, East Chicago, IN 46312 **Permit Number:** T089-35879-00345

Reviewer: Dominic Williams

Maximum Heat Input Capacity (MMBtu/hr) 0.22 Natural Gas-Fired Emergency Generator (G3)

aximum real impul Capacity (wiwiblu/iii)	0.22
aximum Hours Operated per Year (hr/yr)	500
Potential Fuel Usage (MMBtu/yr)	112
High Heat Value (MMBtu/MMscf)	1020
Potential Fuel Usage (MMcf/yr)	0.11

		Pollutant						
Criteria Pollutants	PM*	PM10*	PM2.5*	SO2	NOx	VOC	CO	
Emission Factor (lb/MMBtu)	7.71E-05	9.99E-03	9.99E-03	5.88E-04	4.08E+00	1.18E-01	3.17E-01	
Potential Emissions (tons/yr)	0.0000	0.00	0.00	0.000	0.23	0.01	0.02	

^{*}PM emission factor is for filterable PM-10. PM10 emission factor is filterable PM10 + condensable PM.

Hazardous Air Pollutants (HAPs)

Xylene	1.84E-04 Total	0.000 0.00	
2,2,4-Trimethylpentane	2.50E-04	0.000	
Toluene	4.08E-04	0.000	
Hexane	1.10E-03	0.000	
Methanol	2.50E-03	0.000	
Formaldehyde	5.28E-02	0.003	
1,3-Butadiene	2.67E-04	0.000	
Biphenyl	2.12E-04	0.000	
Benzene	4.40E-04	0.000	
Acrolein	5.14E-03	0.000	
Acetaldehy de	8.36E-03	0.000	
Pollutant	(lb/MMBtu)	Potential Emissions (tons/yr)	
	Factor		
	Emission		

HAP pollutants consist of the eleven highest HAPs included in AP-42 Table 3.2-2.

Methodology

Emission Factors are from AP-42 (Supplement F, July 2000), Table 3.2-2
Potential Fuel Usage (MMBtu/yr) = [Maximum Heat Input Capacity (MMBtu/hr)] * [Maximum Hours Operating per Year (hr/yr)]
Potential Emissions (tons/yr) = [Potential Fuel Usage (MMBtu/yr)] * [Emission Factor (lb/MMBtu)] / [2000 lb/ton]

	Greenhouse Gas (GHG)				
Greenhouse Gases (GHGs)	CO2	CH4	N20		
Emission Factor in lb/MMBtu*	110	1.25			
Emission Factor in lb/MMcf**			2.2		
Potential Emission in tons/yr	6.16	0.07	0.00		
Summed Potential Emissions in tons/yr		6.23			
CO2e Total in tons/yr		7.95			

*The CO2 and CH4 emission factors are from Emission Factors are from AP-42 (Supplement F, July 2000), Table 3.2-2

**The N2O emission factor is from AP 42, Table 1.4-2. The N2O Emission Factor for uncontrolled is 2.2. The N2O Emission Factor for low Nox burner is 0.64. Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

For CO2 and CH4: Emission (tons/yr) = [Potential Fuel Usage (MMBtu/yr)] * [Emission Factor (lb/MMBtu)] / [2,000 lb/ton]
For N2O: Emission (tons/yr) = [Potential Fuel Usage (MMCF/yr)] * [Emission Factor (lb/MMCF)] / [2,000 lb/ton]
CO2e (tons/yr) = CO2 Potential Emission ton/yr x CO2 GWP (1) + CH4 Potential Emission ton/yr x CH4 GWP (25) + N2O Potential Emission ton/yr x N2O GWP (298).

Abbreviations

PM = Particulate Matter NOx = Nitrous Oxides VOC - Volatile Organic Compounds PM10 = Particulate Matter (<10 um) CO = Carbon Monoxide SO2 = Sulfur Dioxide

CO2 = Cabon Dioxide CH4 = Methane N2O = Nitrous Oxide

CO2e = CO2 equivalent emissions

Page 24 of 24 TSD App A

PM2.5 emission factor is filterable PM2.5 + condensable PM.